

 1
US1DOCS 6363432v1

IETF ADMINISTRATION LLC

Request for Proposals

RFC Errata Merge Tool

Date of Issuance: April 8, 2019
Proposal Submission Deadline: April 25, 2019, 5:00 P.M. ET

 2
US1DOCS 6363432v1

IETF LLC Request for Proposals

RFC Errata Merge Tool

The IETF Administration LLC (IETF LLC) is soliciting proposals ("Proposals") to create a tool that
takes, as its input, the source of an RFC and all of its errata, and creates an annotated version of
the RFC that incorporates selected types of errata in a highly visible form.

Proposals from any commercial or non-commercial vendor are welcome.

Timeline
08 Apr: RFP Issued
15 Apr: Questions and Inquiries deadline
18 Apr: Answers to questions issued, RFP Addenda and Update issued
25 Apr: Proposals due
02 May: Selection made, negotiations begin
09 May: Contract execution
13 May: Work begins

This is the process for the Request for Bids:

1. The Statement of Work (SOW) is in attached.

2. Any questions about the Work must be submitted by 15 April 2019. A response to all
parties shall be provided by 18 April 2019. The response will include the questions asked
and the answers, but will not identify the company asking the question.

3. Bids are due by 25 April 2019. The bid must provide a not-to-exceed price, the expected
start date, the expected completion date, any assumptions, and a description of any
dependencies that might cause delays in the schedule.

4. The IETF LLC will discuss the Bids and may ask questions by email and/or conference
call.

5. Once the answers are received a decision will be made to select the bidder to perform
the work and a Work Order will be prepared for execution. We anticipate an award on
or before 2 May 2019.

6. This is the Bid format:

a. Executive Summary

b. Project Approach & Plan

c. Schedule - When the work will begin and end, as well as dependencies and
other milestones.

d. Test Plan

e. Cost & Payment Schedule

f. Warranty & Late Delivery Consequence

g. Technical Support & Maintenance

 3
US1DOCS 6363432v1

h. Miscellaneous

7. Instructions for IETF Software Development Contractors will apply. See
https://trac.tools.ietf.org/tools/ietfdb/wiki/ContractorInstructions?version=26

8. Additionally, bidders for the Datatracker Meeting Application Improvements also have
the option to be considered as a qualified software vendor for Indefinite
Delivery/Indefinite Quantity (IDIQ) Master Services Agreement (MSA) purposes. Please
indicate your interest. IDIQ software vendors will be eligible for future software
development projects to improve and expand to the existing IETF toolset, which has
been substantially developed in Python using the Django framework.

Please reply with questions, if any, and a bid if you are interested in pursuing this opportunity to
ietf-rfps@ietf.org.

Thanks in advance.

Portia Wenze-Danley

 4
US1DOCS 6363432v1

RFC Errata Merge Tool: Statement of
Work	
	
Table of Contents	
Overview and Objectives 5

List of Deliverables 5

Background 6

Description of Tasks and Deliverables 6
Support Tool 6
Errata Merge Tool 6

Errata Placement Criteria 7
Finding Document Sections 7
Errata Normalization 7
Locating Errata Placement 8
Updating the Document 8

Input Data 9
RFCs 9
Errata 9

Output Format 11
CSS Files 11

Basic Color Style Sheet 12
Monochrome Style Sheet 14
Printer Style Sheet 15

Project Resources and Equipment 15
Input Material 15
Additional Equipment 15

Project Schedule 15

Appendix 16

 5
US1DOCS 6363432v1

Overview and Objectives	
The RFC series is a suite of documents published by the RFC Editor for the benefit of the Internet
community. It contains technical and organizational documents about the Internet, including the
specifications and policy documents produced by four document streams within the RFC series:
the Internet Engineering Task Force (IETF), the Internet Research Task Force (IRTF), the
Internet Architecture Board (IAB), and Independent Submissions. Documents in the RFC series
are identified by a number. Once a number is associated with an RFC, the document content
referenced by that number is forever frozen and cannot be changed.	
	
The RFC Editor maintains a database of errata that have been submitted by the consumers of
RFCs. These errata, once reported, can be verified, rejected, or “held for document update.” The
visibility of errata to the consumers of RFCs has historically been poor or nonexistent. This
project seeks to ameliorate this situation by creating a tool that takes, as its input, the source of an
RFC and all of its errata, and creates an annotated version of the RFC that incorporates selected
types of errata in a highly visible form.	
	
This tool will initially be used to create pages served somewhere other than the RFC Editor’s
website (www.rfc-editor.org). After gaining experience and community feedback, the pages
might be moved to that website. Thus, the development of the tools should assume that the way
the results are deployed will change over time.	
	
Note that, while the traditional singular form of “errata” is “erratum,” IETF participants
overwhelmingly use the term “errata” for both purposes. This document follows that convention.	

List of Deliverables	
This statement of work calls for the following deliverables. These deliverables are described in
greater detail in the “Description of Tasks and Deliverables” section below.	
	

1. Errata Merge Tool that ingests an RFC and corresponding errata, and generates an
output document containing the RFC annotated with errata information.

2. Support Tool that fetches RFCs and errata, determines which RFCs require invocation
of the Errata Merge Tool, invokes the Errata Merge Tool as needed, and uploads the
annotated RFCs to one or more remote locations.

3. Base CSS Stylesheet that contains formatting common among all formats, as well as
formatting suitable for printing.

4. Color CSS Stylesheet that formats errata annotation using color coding.
5. Monochrome CSS Stylesheet that formats errata annotation using font variations.
6. JavaScript Support File that contains any functions necessary for active content in the

annotated RFC (e.g., tool-tips, overlays, and content that should be hideable and/or
hidden). This file may not be necessary if all of the described features can be
satisfactorily implemented using CSS alone. In no case will the HTML files generated by
the Errata Merge Tool contain JavaScript files except by including this external file. It is
permissible for this file to make use of additional libraries (e.g., React, Angular).

	
All code deliverables are required to include test-suite covering all functionality. Developers will
follow the Contractor Instructions.	

 6
US1DOCS 6363432v1

Background	
In researching the feasibility of creating a tool to merge errata into existing RFCs, a simplistic
prototype was developed. Based on experimentation with this prototype, it was determined that
significant number of errata — approximately half, on a first-order estimation — can be
mechanically placed in a document in such a way that the erroneous text is completely replaced
by the corrected text. Over half of the remaining errata can be inserted into the proper section in
the document, albeit not at a specific location within the section. The remaining 20% or so of
errata cannot be localized to a specific section in the document.	
	
Based on these promising initial results, we now seek the development of a proper tool to
generate a “patched” version of RFCs that includes inline indications of errata that readers should
be aware of.	

Description of Tasks and Deliverables	

Support Tool	
The support tool will be responsible for providing updated patched versions of RFCs as new
errata for that RFC become available. This tool should be designed to be efficient - only
generating and uploading new files when they are needed. One reasonable approach would be to
keep a local copy of the configured errata.json file and all generated HTML files, using simple
HTTP mechanics (HEAD and Last-Modified) to ensure the errata.json file is fresh, and the
modified time of the locally stored HTML files to determine which need to be created or
regenerated. Another possible approach is using rsync with the deployed service to ensure the
tool has the information necessary to determine what new files need to be generated. Any solution
must allow the URL to find the current errata.json file and the site to which new generated files
are to be uploaded to be configured.	
	
Calculating which HTML files need to be (re)generated requires processing the contents of the
errata.json file:	
	

1. For each record in the “errata.json” file in the state “verified” or “held for document
update,” compare the record’s “update_date” against the modification date of the
corresponding annotated RFC file. If the errata “update_date” is later than the annotated
RFC’s modified date (or no annotated RFC file is present), make note of it as a document
in need of updating.

2. After each errata record has been evaluated, invoke the Errata Merge Tool on all
documents in need of updating.

	
The support tool must be suitable for running in an automated fashion (e.g., in a cron job).	

Errata Merge Tool	
The Errata Merge Tool will take a canonical RFC in text format and combine it with the
information in the “errata.json” file to produce an HTML file with the relevant errata placed
inline in the most useful position, as described below. This tool will accept a command line
argument to determine which subset of errata types will be placed inline. The initial deployment

 7
US1DOCS 6363432v1

is expected to only include “approved” errata, but future deployments may focus on other errata
types, particularly “hold for document update”.	
	

Errata Placement Criteria	
	
The task of the Errata Merge Tool is summarized as reading a canonical RFC in text format,
placing relevant errata at the proper location in the RFC, and writing out an annotated version of
the RFC as an HTML file. There are four major steps in realizing this task: (1) finding sections
within the document; (2) normalizing errata; (3) locating the most precise placement possible for
the errata within the document; and (4) modifying the document.	

Finding Document Sections	
Most errata are reported against a specific section in a document. When this is true, the tool
should examine only the text in that section when attempting to place an errata. Sections heading
can generally be identified as lines starting with zero or more spaces, followed by a sequence of
digits and dots, and typically ending in a dot. Appendices can be similarly identified as starting
with zero or more spaces, followed by the word “Appendix”, and then a sequence of digits,
letters, and dots.	
	
More recent RFCs are fairly consistent that section and appendix headers start in the first column
of a line; however, as errata are reported against older RFCs as well, the tool needs to handle the
quirks of older formats. Some interesting examples to test with include RFC 822 (which uses a
constant indent for section headers) and RFC 1122 (which uses a variable indent for them).	
	
Some documents omit section numbers altogether. For these documents, the tool should attempt
to match the text against the entire document. See, for example, RFC 854: despite the lack of
section numbers in the document, and despite the fact that Errata 571 indicates a section number,
the tool should still be able to place it inline in the document. 	
	
The section-finding text in the Python module, ‘rfc2html’, available on https://pypi.org/, may
prove useful in implementing this logic for the Errata Merge Tool. 	

Errata Normalization	
Errata are entered by hand by their reporters, and frequently have subtle differences from the
source material that would otherwise prevent the “original” text from matching the text in an RFC
verbatim. Prior to attempting to match an errata against an RFC, its original and replacement text
needs to be processed as follows:	
	

• Any lines starting with “|” (the horizontal bar character) should have this bar removed.
Several errata use this to designate which lines are being updated in the document. See
Errata 2561 for an example.

• Any lines consisting exclusively of “^” should be removed. Several errata use this to
designate specific columns in which changes are being made. See, for example, Errata
1701.

• Smartquotes (U+2018, U+2019, U+201C, and U+201D) should be converted to straight
quotes (ASCII 34 and ASCII 39, as appropriate).

	

 8
US1DOCS 6363432v1

Locating Errata Placement	
When placing errata, the goal of the tool is to find as precise a placement of the errata as possible.
The following process will result in one of three outcomes for each errata, in decreasing order of
preference: (1) being able to determine exact text to be corrected (an “inline” correction), (2)
being able to determine a section to which an errata applies (a “section” correction), and (3) being
unable to determine a specific location within the document (an “unplaceable” correction).	
	
Ideally, the “original” text can be matched against a sequence of text in the correct section of the
document. To do so, the “original text” is treated as a search string and compared against the
indicated section in the RFC text. For the purposes of this search, the following rules are applied:	
	

• Any sequence of one or more whitespace characters (ASCII values 9, 10, 12, 13, and 32)
in the original text should be treated as matching any sequence of one or more whitespace
characters in the RFC text.

• Any Unicode character sequences remaining in the original text should be treated as
matching one to three arbitrary characters in the RFC text (e.g., if implemented using a
regular expression engine, these would be treated as “.{1,3}”).

• Since some errata include literal document headers and footers while other excise such
text, an attempt should first be made to match the RFC in its original form (with headers
and footers present); if this fails, then the headers and footers should be ignored when
performing the match.

	
If applying these rules results in no match within the section, or if section boundaries cannot be
located with the document, then the matching is instead attempted against the entire document
instead of a single section.	
	
If the result of the foregoing attempts result in exactly one match, then the errata can be applied
“inline.”	
	
If the result is no match, or more than one match, then the tool will attempt to locate the proper
section within the RFC, using the section number the errata was reported against. If this is
possible, then the errata can be applied as the section level.	
	
If the preceding attempts to find a match fail, then the errata will be applied as a combined header
/ footnote.	

Updating the Document	
	
Once the proper location for placing an errata has been determined, the output document is
updated to reflect the contents of the errata.	
	
For those “verified” errata that can be placed inline, assuming that rendering “verified” errata has
been specified on the command-line, the original text is replaced by the corrected text. This text
will be enclosed in a tag with an appropriate class that allows for errata-type-specific CSS
styling (e.g., “verified-inline-styling”). 	
	
Other errata types will be handled similarly, For example, those “held for document update”
errata that can be placed inline, again assuming that rendering “hold for document update errata
has been specified on the command-line, the original text remains in the RFC, but is enclosed in a
 tag that allows for errata-type-specific CSS styling (e.g., “held-inline-styling”). 	

 9
US1DOCS 6363432v1

	
For any inline text matches, the text will be followed by text in a <div> tag that indicates the
errata number (with a link to the errata), the original text, and any notes associated with the errata.
This <div> will be tagged with a class that indicates it is supplementary information (e.g.,
“supplementary-styling”).	
	
Note that some documents have multiple errata that attempt to make conflicting changes to the
same set of text. When this occurs, the tool should make an attempt to place the earliest errata
using the preceding approaches, and should insert subsequent errata immediately below the
placed errata in the same format as section-level errata.	
	
For those errata that can be matched to a section, a <div> will be placed at the beginning of the
corresponding section. This <div> will contain the errata number (with a link to the errata) along
with the original text, the replacement text, and any notes associated with the errata. The class of
the <div> will distinguish the errata type (e.g., “verified-section-styling” and “held-section-
styling”).	
	
The remaining errata will be placed at the end of the document, in individual <div> elements.
These will contain the errata number (with a link to the errata) along with the original text, the
replacement text, and any notes associated with the errata. The class of the <div> will distinguish
the errata type (e.g., “verified-endnote-styling” and “held-endnote-styling”). Verified errata will
also be added to a list that is prepended to the document as its own <div>, with an indication
similar to the following: “This document has been updated by the following errata, which cannot
be shown in-line in the document. Please see the end of this file for additional details: Technical
Errata 832, Technical Errata 1073”. This div will have its own styling class (e.g., “verified-
banner-styling”).	
	
When multiple errata are placed in the same location (e.g., at the beginning of a section or at the
end of an RFC), they should be ordered by the date of their most recent change (oldest errata
first).	
	

Input Data	
RFCs	
	
The main document input format for this version of the tool is the plain-text version of an RFC,
which includes headers, footers, and page breaks.	
	
While the format of recent RFCs are fairly well standardized — with sections delineated by
numeric section numbers starting in column 1 — there has historically been significant variation
in the format of RFCs.	

Errata	
	
The preliminary format for the errata is single JSON array of objects, each of which contain the
following fields:	
	

• errata_id: Unique number that identifies this report
• doc-id: Indication of the RFC to which the report applies

 10
US1DOCS 6363432v1

• errata_status_code: Indication of the errata status. Valid values are “Reported”,
“Verified”, “Rejected”, and “Held for Document Update”.

• errata_type_code: nature of the errata (either “Technical” or “Editorial”)
• section: Section of the document to which the errata applies. Typically digits separated by

dots, but may also take the two additional forms “Appendix X” (where X is some
combination of digits and letters, separated by dots), and “GLOBAL”.

• orig_text: Reporter-entered indication of the text in the RFC to be replaced.
• correct_text: Reporter-entered indication of the text that should replace the original text.
• notes: Reporter- and verifier-entered annotations explaining the rationale for the change

and any additional information associated with the errata.
• submit_date: Date, in “YYYY-MM-DD” format, on which the errata was initially

reported.
• submitter_name: Unverified submitter-entered indication of their own name.
• verifier_id: Unique (within the errata database), authenticated numeric identifier of the

verifier (that is, the person who placed the errata in the “verified,” “rejected,” or “held for
document update” state).

• verifier_name: Human-readable form of the individual identified by the verifier_id field.
• update_date: Date and time at which the errata record was most recently updated, in the

format “YYYY-MM-DD HH:MM:SS”.
	
Dates and times are given in US Pacific Time, using the time in effect that the record was created
(i.e., using PDT when Daylight Savings Time is in effect in US Pacific Time Zone, PST
otherwise).	
	
Example of a single errata record (line wrapping is present for readability purposes only):	
	

{	
 "errata_id": 4439,	
 "doc-id": "RFC7240",	
 "errata_status_code": "Verified",	
 "errata_type_code": "Technical",	
 "section": 2,	
 "orig_text": " preference = token [BWS \"=\" BWS word]\r\n

 *(OWS \";\" [OWS parameter])\r\n parameter = token [
BWS \"=\" BWS word]",	

 "correct_text": " preference = preference-parameter *(OWS \";\" [OWS\r\n
 preference-parameter])\r\n preference-parameter =
parameter / token\r\n",	

 "notes": "Section 1.1 incorrectly states that \"word\" is defined in RFC
7230. It is not. Therefore, the syntax is completely under-
specified.\r\n\r\nThe \"parameter\" rule, as defined in RFC 7231, is
used in lots of other header field definitions successfully. The only
drawback is that \"parameter\" doesn't permit the use of \"OWS\" either
side of the \"=\" character.\r\n\r\nThis change would also require
changes to Section 1.1.",	

 "submit_date": "2015-08-09",	
 "submitter_name": "Martin Thomson",	
 "verifier_id": 130,	
 "verifier_name": "Barry Leiba",	
 "update_date": "2016-02-23 15:34:45"	

 11
US1DOCS 6363432v1

}	
	

Output Format	
The output of the Errata Merge Tool will be a properly-formatted HTML5 document, with the
following general characteristics:	
	

• Document text will be output in a fixed-width font, to match the original fixed-width
formatting of the text RFCs.

• Page headers, footers, and page-feed (ASCII 12) characters will be stripped. Since the
insertion of errata can change the length of the page into which they are inserted, these
constructs do not make sense to include. The “strip()” function from the Rfcdiff tool
may serve as a useful example of how such stripping can be performed.

• The HTML file will contain no styling information. All text styling will be applied using
CSS files, described below.

	
Any errata associated with the document of the types specified on the command line will be
incorporated into the document. As described in “Updating the Document,” above.	
	
The output of the tool must be verified to generate no console warnings (including deprecation
warnings) and no errors in the most recent released versions of at least the four most popular
desktop browsers, as determined by Statcounter.	

CSS Files	

The deliverables include three CSS files, used to style the errata that have been inserted. The first
such file a baseline CSS file, will be applied to all documents. The baseline file includes styling
suitable for printing (using the “@media print {...}” css directive), as well as any styles that
are common between the two screen-oriented styles.	
	
The second style is a color-coded CSS file, that will make use of color as a designator of errata-
related changes, as described in this section. The third style is a monochrome CSS file that will
make use of color-independent font styling (e.g., underlines, italics, and bold formatting), for the
benefit of users with atypical color perception. The colored styling will be used be default.	
	
RFC with integrated errata will incorporate these CSS files using a technique similar to the one
demonstrated below:	
	

<link rel="stylesheet" type="text/css" href="errata-base.css" />	
		
<link rel="stylesheet" type="text/css" href="errata-color.css"	
 title="Default: Basic Colors" />	
		
<link rel="alternate stylesheet" type="text/css" href="errata-monochrome.css"	
 title="Monochrome" />	

	
This approach will allow users of browsers that support the “alternate stylesheet” mechanism to
select a style that relies on font variations rather than color to indicate the presence of errata:	

 12
US1DOCS 6363432v1

	

	
	
The “Updating the Document” section, above, calls for eight distinct styles within the document.
The CSS files will format these as described in the following section. Note that the names used
below match the examples from the “Updating the Document” section. The actual style names
used are allowed to vary from these names. The specific font style and color schemes are
suggestions, and input from the vendor and stakeholders is welcome.	
	
Additional styles may be used to, e.g., highlight exact word changes, and to set corrected text off
(e.g., with a strikethrough).	
	

Basic Color Style Sheet	
• Verified-inline-styling: Text will be green.
• Held-inline-styling: Text will be blue.
• Supplementary-styling: Text will be black on a light yellow background. Text will be

hidden by default, with a small visible widget that allows for its expansion by either
hovering or clicking.

• Verified-section-styling: Text will be black on a light green background.
• Held-section-styling: Text will be black on a light blue background. Text will be hidden

by default, with a small visible widget that allows for its expansion by either hovering or
clicking.

• Verified-endnote-styling: Same as verified-section-styling.
• Held-endnote-styling: Same as held section styling.
• Verified-banner-styling: Text will be black on a yellow background.

	
	
The following example shows an example of the placement of a verified inline patch:	
	

 13
US1DOCS 6363432v1

	
	
Clicking on “Show More” would expand the errata information:	
	

 14
US1DOCS 6363432v1

	
Note that the preceding examples are meant to be illustrative, not prescriptive.	
	

Monochrome Style Sheet	
	

• Verified-inline-styling: Text will be bold.
• Held-inline-styling: Text will be italic.
• Supplementary-styling: Text will be black on a light grey background. Text will be

hidden by default, with a small visible widget that allows for its expansion by either
hovering or clicking.

• Verified-section-styling: Text will be bold and black on a light grey background.
• Held-section-styling: Text will be italic and black on a light grey background. Text will

be hidden by default, with a small visible widget that allows for its expansion by either
hovering or clicking.

• Verified-endnote-styling: Same as verified-section-styling.

 15
US1DOCS 6363432v1

• Held-endnote-styling: Same as held section styling.
• Verified-banner-styling: Text will be black on a light grey background.

	
Printer Style Sheet	

	
Printer formatting will be identical to monochrome formatting, except that no sections will be
hidden by default.	

Project Resources and Equipment	

Input Material	
The source materials to be used for creating the tool are available at the following locations:	
	

• RFC Documents in plain-text format are available individually from https://www.rfc-
editor.org/rfc/rfcXXXX.txt, where “XXXX” represents the variable-length RFC number in
question. The entire set of rfcs is also available via rsync at rsync.ietf.org::rfc.

• The entire errata database is available as a single JSON file at https://www.rfc-
editor.org/errata.json. The primary intended consumer of this data is the RFC Errata
Merge Tool, and so reasonable requests from the developer regarding format, location,
and update frequency of this information will be considered.

 16
US1DOCS 6363432v1

Appendix	

RFC Series https://www.rfc-editor.org/
Database of Errata https://www.rfc-editor.org/errata.php
Contractor Instructions https://trac.tools.ietf.org/tools/ietfdb/wiki/ContractorInstructions?version=26
Simplistic Prototype https://github.com/adamroach/patch-errata
RFC 822 https://www.ietf.org/rfc/rfc822.txt
RFC 854 https://www.ietf.org/rfc/rfc854.txt
RFC 1122 https://www.ietf.org/rfc/rfc1122.txt
Errata 571 https://www.rfc-editor.org/errata/eid571
Errata 1701 https://www.rfc-editor.org/errata/eid1701
Errata 2561 https://www.rfc-editor.org/errata/eid2561
rfc2html https://pypi.org/project/rfc2html
The Rfcdiff Tool https://tools.ietf.org/tools/rfcdiff/code
Statcounter http://gs.statcounter.com/browser-market-share/desktop/worldwide

